# Aximax, 400 Series, Axial, Conformally Coated, X8L Dielectric, 25 – 50 VDC (Commercial & Automotive Grade)



#### Overview

KEMET's Aximax conformally coated axial through-hole ceramic capacitors in X8L dielectric feature a 150°C maximum operating temperature and is considered "general purpose high temperature". These components are fixed, ceramic dielectric capacitors suited for high temperature bypass and decoupling applications or frequency discriminating circuits where Q and stability of capacitance characteristics are not critical. X8L exhibits a predictable change in capacitance with respect to time and voltage and boasts a minimal change in capacitance with reference to ambient temperature up to 125°C. Beyond 125°C X8L displays a wider variation in capacitance. Capacitance change is limited to ±15% from -55°C to +125°C and +15, -40% from 125°C to 150°C.

Driven by the demand for a more robust and reliable component, X8L dielectric capacitors were developed for critical applications where reliability at higher operating temperatures are a concern. These capacitors are widely used in automotive circuits as well as general high temperature applications.

In addition to commercial grade, automotive grade devices are available and meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements.

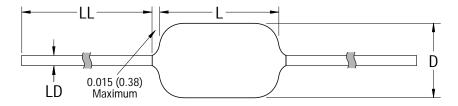
These devices meet the flame test requirements outlined in UI Standard 94V-0.



| С       | 410            | С                        | 105                                                 | K                                                 | 3                         | N          | 5                 | Т                                           | A               | 7200                                                                                                                                      |
|---------|----------------|--------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------|------------|-------------------|---------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Ceramic | Style<br>/Size | Specification/<br>Series | Capacitance<br>Code (pF)                            | Capacitance<br>Tolerance <sup>1</sup>             | Rated<br>Voltage<br>(VDC) | Dielectric | Design            | Lead<br>Finish <sup>2</sup>                 | Failure<br>Rate | Packaging/Grade<br>(C-Spec)                                                                                                               |
|         | 410<br>430     | C = Standard             | Two significant<br>digits and<br>number of<br>zeros | $J = \pm 5\%$<br>$K = \pm 10\%$<br>$M = \pm 20\%$ | 3 = 25 V<br>5 = 50 V      | N =<br>X8L | 5 =<br>Multilayer | T = 100%<br>Matte Sn<br>H = SnPb<br>(60/40) | A = N/A         | Blank = Bulk<br>7200 = 12" Reel<br>7293 = Ammo pack<br>9170 = Automotive grade<br>9170 7200 = Auto 12" Reel<br>9170 7293 = Auto Ammo pack |

<sup>&</sup>lt;sup>1</sup> Additional capacitance Tolerance offerings may be available. Contact KEMET for details.

Standard: 100% matte tin (Sn) with nickel (Ni) underplate and steel core ( "T" designation).


Alternative 1: 60% tin (Sn)/40% lead (Pb) finish with copper-clad steel core ("H" designation).

Additional lead finish options may be available. Contact KEMET for details

<sup>&</sup>lt;sup>2</sup> Lead materials:



## **Dimensions – Inches (Millimeters)**



| Series | Style/<br>Size | L<br>Length<br>Maximum | D<br>Diameter<br>Maximum | LD<br>Lead Diameter | LL<br>Lead Length<br>Minimum |
|--------|----------------|------------------------|--------------------------|---------------------|------------------------------|
| C41X   | 410            | 0.170 (4.32)           | 0.095 (2.41)             | 0.020+0.001/-0.003  | 10(25.4)                     |
| C43X   | 430            | 0.240 (6.10)           | 0.150 (3.81)             | (0.51+0.025/-0.076) | 1.0 (25.4)                   |

#### **Benefits**

- · Axial through-hole form factor
- Conformally coated
- Operating temperature range of -55°C to +150°C
- · Lead (Pb)-free, RoHS and REACH compliant
- DC voltage ratings of 25 V and 50 V
- Capacitance offerings ranging from 0.1  $\mu F$  up to 2.2  $\mu F$
- Available capacitance tolerances of ±5%, ±10% and ±20%
- Commercial and Automotive (AEC-Q200) grades available
- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated lead finish allowing for excellent solderability
- SnPb-plated lead finish option available upon request (60/40)
- Encapsulation meets flammability standard UL 94V-0

## **Applications**

Typical applications include use in extreme environments such as down-hole oil exploration, under-hood automotive, aerospace and defense.

## **Application Notes**

These devices are not recommended for use in overmold applications and/or processes.



#### **Qualification/Certification**

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com.

## **Environmental Compliance**

Lead (Pb)-free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option).

#### **Electrical Parameters/Characteristics**

| Item                                                               | Parameters/Characteristics                                                              |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Operating Temperature Range                                        | -55°C to +150°C                                                                         |
| Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC) | ±15%(-55°C to 125°C) +15%, -40% (125°C to 150°C)                                        |
| Aging Rate (Maximum % Capacitance Loss/Decade Hour)                | 3.0%                                                                                    |
| Dielectric Withstanding Voltage (DWV)                              | 250% of rated voltage<br>(5±1 seconds and charge/discharge not exceeding 50 mA)         |
| Dissipation Factor (DF) Maximum Limit at 25°C                      | 2.5%                                                                                    |
| Insulation Resistance (IR) Limit at 25°C                           | 1,000 megohm microfarads or 100 GΩ<br>(Rated voltage applied for 120±5 seconds at 25°C) |

To obtain IR limit, divide  $M\Omega$ - $\mu$ F value by the capacitance and compare to  $G\Omega$  limit. Select the lower of the two limits. Capacitance and dissipation factor (DF) measured under the following conditions:

1 MHz  $\pm$ 100 kHz and 1.0  $\pm$ 0.2 Vrms if capacitance  $\leq$  1,000 pF

1 kHz ±50 Hz and 1.0 ±0.2 Vrms if capacitance > 1,000 pF

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

#### **Post Environmental Limits**

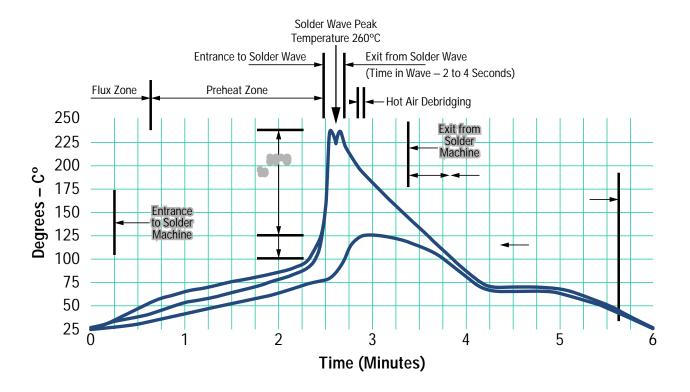
| High Temperature Life, Biased Humidity, Moisture Resistance |                                                                                                        |        |     |       |                |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|-----|-------|----------------|--|--|
| Dielectric                                                  | Dielectric Rated DC Capacitance Dissipation Factor Capacitance Insulation (Maximum %) Shift Resistance |        |     |       |                |  |  |
| X8L                                                         | 25                                                                                                     | ٨Ш     | 5.0 | . 20% | 10% of Initial |  |  |
| ΛδL                                                         | 50                                                                                                     | 50 All |     | ±20%  | Limit          |  |  |



# Table 1A - C410 Style/Size (0.095" Diameter x 0.170" L), Capacitance Range Waterfall

| e (VDC)<br>Code                                                                                                                                                                                              | 25                           | 50                                                                 |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Code                                                                                                                                                                                                         | 3                            |                                                                    |                                                                                             |
|                                                                                                                                                                                                              | <b>-</b>                     | 5                                                                  |                                                                                             |
| Capacitance Capacitance Tolerance                                                                                                                                                                            |                              | vailable Capacitance)                                              |                                                                                             |
| $\begin{array}{c} 0.1 \mu F \\ 0.12 \mu F \\ 0.15 \mu F \\ 0.18 \mu F \\ 0.22 \mu F \\ 0.27 \mu F \\ 0.33 \mu F \end{array} \qquad \begin{array}{c} J = \pm 5\% \\ K = \pm 10\% \\ M = \pm 20\% \end{array}$ |                              | 104<br>124<br>154<br>184<br>224<br>20.6838 -0.01 Tw -28.8a394(.680 | l T0.0C2)-0.33μ081(4)(Fv924Fv924681 <b>]</b> J0nC7d ( )Tj 0.00α                             |
|                                                                                                                                                                                                              | $J = \pm 5\%$ $K = \pm 10\%$ | 104<br>124<br>154<br>184<br>J = ±5%<br>224<br>K = ±10%<br>274      | 104 104 104 124 124 124 154 154 154 184 184 184 184 187 187 187 187 187 187 187 187 187 187 |




## **Soldering Process**

#### **Recommended Soldering Technique:**

- Solder Wave
- Hand Soldering (Manual)

#### **Recommended Soldering Profile:**

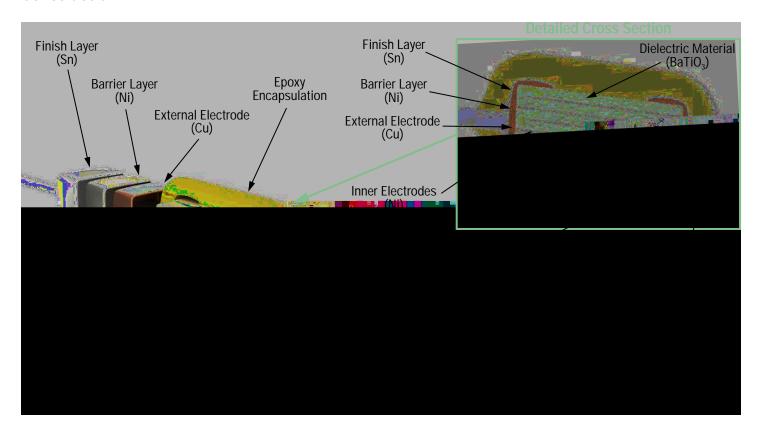
· Optimum Wave Solder Profile



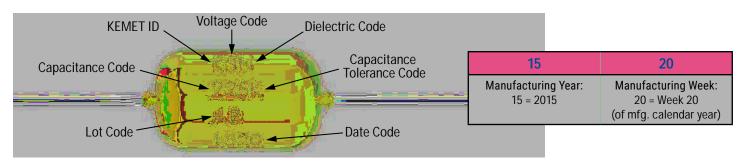


#### Table 2 – Performance & Reliability: Test Methods and Conditions

| Stress Reference                                     |                                       | Test or Inspection Method                                                                                                                                                                                                                        |  |  |
|------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Coldorobility                                        | J-STD-002                             | Magnification 50 X. Conditions:                                                                                                                                                                                                                  |  |  |
| Solderability                                        | J-51D-002                             | a) Method A, at 235°C, Category 3                                                                                                                                                                                                                |  |  |
| Temperature Cycling JESD22 Method JA-104             |                                       | 5 cycles (-55°C to +150°C), measurement at 24 hours ±2 hours after test conclusion.                                                                                                                                                              |  |  |
| Biased Humidity                                      | MIL-STD-202 Method                    | Load humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor. Measurement at 24 hours ±2 hours after test conclusion.                                                                                                        |  |  |
|                                                      | 103                                   | Low volt humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours ±2 hours after test conclusion.                                                                                                            |  |  |
| Moisture Resistance                                  | MIL-STD-202 Method<br>106             | t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered.<br>Measurement at 24 hours ±2 hours after test conclusion.                                                                                                                          |  |  |
| Thermal Shock                                        | MIL-STD-202 Method<br>107             | -55°C/+150°C. Note: Number of cycles required = 300. Maximum transfer time = 20 seconds. Dwell time - 15 minutes. Air - Air.                                                                                                                     |  |  |
| High Temperature Life                                | MIL-STD-202 Method<br>108<br>/EIA-198 | 1,000 hours at 150°C with 2 X rated voltage applied.                                                                                                                                                                                             |  |  |
| Storage Life                                         | MIL-STD-202 Method<br>108             | 150°C, 0 VDC, for 1,000 hours.                                                                                                                                                                                                                   |  |  |
| Vibration                                            | MIL-STD-202 Method<br>204             | 5 g for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8"X5" PCB .031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2,000 Hz. |  |  |
| Resistance to Soldering MIL-STD-202 Meth<br>Heat 210 |                                       | Condition B. No preheat of samples. Note: single wave solder – procedure 2.                                                                                                                                                                      |  |  |
| Terminal Strength                                    | MIL-STD-202 Method<br>211             | Conditions A (454g), Condition C (227g)                                                                                                                                                                                                          |  |  |
| Mechanical Shock                                     | MIL-STD-202 Method<br>213             | Figure 1 of Method 213, Condition C.                                                                                                                                                                                                             |  |  |
| Resistance to Solvents                               | MIL-STD-202 Method<br>215             | Add aqueous wash chemical – OKEM Clean or equivalent.                                                                                                                                                                                            |  |  |


## Storage & Handling

The un-mounted storage life of a through-hole (leaded) ceramic capacitor is dependent upon storage and atmospheric conditions as well as packaging materials. While the ceramic chips enveloped under the epoxy coating themselves are quite robust in most environments, solderability of the wire lead on the final epoxy-coated product will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature and exposure to direct sunlight – reels may soften or warp, and tape peel force may increase.


KEMET recommends storing the un-mounted capacitors in their original packaging, in a location away from direct sunlight, and where the temperature and relative humidity do not exceed 40 degrees centigrade and 70% respectively. For optimum solderability, capacitor stock should be used promptly, preferably within 18 months of receipt. For applications requiring pre-tinning of components, storage life may be extended if solderability is verified. Before cleaning, bonding or molding these devices, it is important to verify that your process does not affect product quality and performance. KEMET recommends testing and evaluating the performance of a cleaned, bonded or molded product prior to implementing and/or qualifying any of these processes.



#### Construction



## Marking



## **Packaging Quantities**

| Style/<br>Size | Standard Bulk<br>Quantity | Ammo Pack<br>Quantity<br>Maximum | Reel Quantity<br>Maximum<br>(12" Reel) |  |
|----------------|---------------------------|----------------------------------|----------------------------------------|--|
| 410            | 300/Box                   | 4,000                            | 5,000                                  |  |
| 430            | 200/Box                   | 2,000                            | 2,500                                  |  |



## **KEMET Electronics Corporation Sales Offices**

For a complete list of our global sales offices, please visit www.kemet.com/sales.

#### **Disclaimer**

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such